Ruby Object Model
— The S1 structure

Ondfej Pavlata

April 23, 2012

Abstract An algebraic structure is described that forms the innermost core of the
object model of the Ruby programming language. The structure, denoted S1, is
induced by superclass and eigenclass links between objects. Since Ruby is a serious
candidate for the most object-oriented programming language in the world, the S1
structure can be considered to be the core structure of object technology.

We provide a simple set-theoretic representation showing how the structure can
be interpreted via set inclusion and set membership. We also describe lazy evaluation
of infinite eigenclass chains. Finally, the Smalltalk precursor of the S1 structure is
discussed.

Keywords Ruby, object model, structure, abstract state machine, monounary alge-
bra, tree, inheritance, superclass, eigenclass, metaclass, Smalltalk-80.

1 Introduction

Mathematical structures, shortly, structures [Mull0] are used in science to provide insightful
description of phenomena under consideration. Structures are primarily human-centric. To
be descriptive they must themselves be described in a way that is comprehensible to a human
reader. Most often, complex descriptions can be decomposed into simpler parts. For a structure
S, this yields a hierarchy of structures that are abstractions of §. The higher in the hierarchy a
structure is, the more abstract it is. The more abstract a structure is, the more fundamental it
is, because less abstract structures are based on it.

In software engineering, structures naturally arise as a means for description of data. This
has been recognized in particular in the theory of Abstract State Machines (ASM) [Gur95]
[BS03]. The central point of this theory is a model of program computation in which each state
is a mathematical structure. Since structures can be specified incrementally, one can build a
chain of increasingly refined models, eventually obtaining a (full) formal specification of the
program. This method should serve purposes that fall into 2 main categories:

(A) Human-centric: Provide rigorous implementation-independent description that clarifies
the software under consideration.

(B) Machine-centric: Perform automatic program verification (model checking) by processing
the formal specification as an executable code.

However, present applications of abstract state machines seem to be predominantly concerned
with the (B) case — they are computer-centric. Even case studies like [SSB01] that claim to

Ondrej Pavlata. Ruby Object Model — The S1 structure. Available at http://www.atalon.cz

http://www.atalon.cz

serve both purposes equally well, seem to be (to the author of this article) significantly affected
by runtime orientation. In fact, the author of this article was not able to find a single document
(of other authors) that could be considered a relevant human-centric application of structures in
the spirit of abstract state machines.

The subject of this article is a structure, denoted S1, that forms the fundamental part
of the Ruby object model. The Ruby programming language [FMO08] [Bla09] is an extremely
sophisticated tool for creating software. It is a complex language with strong support for
expressing things as simple and as clear as possible. Being object-oriented, Ruby belongs to the
branch of information technology that has abstraction as one of its main concerns. Therefore,
the S1 structure can be considered an essence of essence of essence. Hopefully, this article will
provide a valid contribution to “structural” foundation of information technology.

1.1 Ruby version

This article refers to Ruby 1.9, more specifically, to the Matz’s Ruby Interpreter (MRI) 1.9.2.
However, in the S1 structure, there are presumably no differences between 1.9 and previous
versions, except for the presence of the BasicObject class (so that previous versions contained
3 helix classes instead of 4). Moreover, no changes have been announced for the 2.0 version that
would relate to the S1 structure.

2 Preliminaries

2.1 Notational conventions

In most cases we will use Ruby-like “dot” notation for functions (maps). For example, z.f
means the value of .f at x. If X is a subset of the domain of .f, then X.f denotes the image of
X under .f, i.e. the set {z.f | x € X}. This also holds in the case that X happens to also be
an element of the domain (the interpretation is indicated by the uppercase notation). We will
use left-to-right alignment for relational and functional composition: R o S = {(r,s) | (r,z) € R
and (z,s) € S for some x}. Similarly, .f.g means (.f) o (.g).

Symbols — / ~ / < indicate total / partial / injective maps, respectively.

Ruby notation is also used for lists. In particular, {[i] and l.last denote the i-th and the last
member of a list [, respectively.

2.2 Monounary algebra

A (total) monounary algebra is an algebra with a single unary operation, i.e. it is a structure
(X, .p) such that X is a set and .p is a function X — X.

A partial monounary algebra is a structure (X, .p) where .p is a partial function on X. An
element = € X is called a fixed point if x.p = x. There is a one-to-one correspondence between
total monounary algebras and partial monounary algebras without fixed points: the fixed points
become undefined and vice versa. This can be notationally expressed by adding/removing an
overline (.p <> .p).

We denote x.p(i) the i-th application of .p to x (we put z.p(0) = x).

1 An exception to this rule are Ruby constant identifiers, e.g. B.ec means the eigenclass of B.

http://www.atalon.cz

Ruby Object Model — The S1 structure - 3

2.3 Algebraic forest

By an algebraic forest (or just forest) we mean a structure which has one of the following
equivalent forms:

(1) A partial order whose every principal up-set is a finite chain:

A partial order (X, <) such that for every x € X, the set x.ps = {y € X | z < y} is finite
and totally ordered by <.

(2) A monounary algebra whose every non-empty subalgebra has a fixed point:

An algebra (X, .p) with just one unary operator, .p: X — X, such that for every z € X,
z.p(i) = x.p(i + 1) for some natural 1.

(3) A partial monounary algebra without total non-empty subalgebras:

A partial algebra (X, .p) with just one partial unary operator, the parent partial function
p: X ~ X, such that for every x € X, z.p(i) is defined for only finitely many i.

The correspondence (1)<—(3) and (1)—(3) is via reflexive transitive closure and reduction,
respectively. (2) and (3) correspond via the .p <+ .p correspondence of (partial) monounary
algebras.

Because the set z.ps from (1) is a finite chain in <, we can regard it as a finite list. The root
map .7 : X — X is then defined by z.r = z.ps.last. Obviously, .r is a closure operator w.r.t.
(X, <). An element is a root if it is .r-closed (i.e. .p-fixed, i.e. .p-undefined).

2.4 Algebraic tree

By an algebraic tree (or just tree) we mean an algebraic forest with exactly one root. As an
algebra, it is a structure (X, .p, r), such that (X, .p) is an algebraic forest and r is the only fixed
point of .p.

2.5 Primorder algebra
By a primorder algebra we mean a structure (X, .ec,.pr) where X is a set,

.ec is a map X — X, x.ec is called the eigenclass of x,

prisamap X — X, x.pr is called the primary element of x.

Elements from X.pr (resp. X.ec) are called primary (resp. eigenclasses). The structure is
subject to the following axioms:
(1) .ec is injective.
We denote .ce the inverse of .ec. If defined, z.ce is the (direct) eigenclass predecessor of x.

(2) The partial algebra (X, .ce) is a forest with the root map equal to .pr.

We write z.ec(i) for i-th application of .ec to . The eigenclass index of x, denoted z.eci, is
defined as the depth of = in (X, .ce), i.e. it is the unique i such that z.pr.ec(i) = .

Observations:

http://www.atalon.cz

(i) Each component of the monounary algebra (X, .ec) is isomorphic (via .eci) to the structure
(N, succ) of natural numbers where succ is the successor operator.

(ii)) An element is primary iff it is the primary element of itself iff it has no eigenclass
predecessors iff it has zero eigenclass index.

(iii) A primorder algebra (X, .ec,.pr) is uniquely given by its reduct (X, .ec).

2.6 State transition system

By a (labelled) state transition system we mean structure (C, Act, T, r) where

C' is the state domain which is a set-theoretic class of (many-sorted) structures with a
common signature, elements of C' are states,

Act is the action domain which is a set of actions,
T is the transition relation which is a subset of C' x Act x C,

r is an element of C called the inital state.

The reachability relation, R*, is defined as the reflexive transitive closure of the natural
projection R of T' to C' x C'. The class of reachable states is a subclass D of C' that equals the
image of the initial state » under R*.

2.7 Superstructure

For a set X, we denote P(X) the powerset of X, the set of all subsets of X. In addition, we
denote

P.(X) =P(X)\ {0}, the set of all non-empty subsets of X,
P(X) =P, (X)UX (the first quasi-superstructure of X).

We will also use exponents for multiple application, e.g. P,?(X) means i-th application of P, to
X (we put P,°(X) = X).
We call a set V' a superstructure [CK90] if it equals the infinite union

V =U{PYU) | i€ N} (sothat we could write V = P>(U))
where U is a subset of V such that

e D¢ U,
e xNV = for every z € U.

This means that U is uniquely given as the set U(V) ={x € V | 2NV = 0}. Elements of U
can be considered urelements (and we will call them so) — their set-theoretic structure does not
interfere with the superstructure so that they are atoms in V' with respect to set membership.

For a € V', we denote a.d the rank (alternatively, depth) of a to be the smallest ¢ such that
a € P(U). Equivalently, a.d is the maximal n such that

ag € - -+ € a, = a for some ay, ..., a, from V (necessarily, ay is an urelement).

http://www.atalon.cz

Ruby Object Model — The S1 structure - 5

The superstructure is naturaly stratified according to the rank function. The set U of
urelements is exactly the set of elements with rank 0. For every natural n > 0, the difference
P (U) \ P,""1(U) is the set of elements with rank n.

For a € V' \ U, non-empty intersections of a with strata of V' form strata of a. We denote
a.p the bottom stratum of a, i.e.

a.p={r €a|x.d=d} where d =min{z.d |z € a}.

We also denote .p the extension of .p to V' by putting x.p = z if x is an urelement.

We denote .ec the eigenclass map V' — V defined as an “adaptation” of P, to urelements as
follows:

z.ec = {x} if x is an urelement,

z.ec = P, (z) otherwise.

Proposition

(i) (V,.ec) is (the reduct of) a primorder algebra.

We will apply established notation and terminology, in particular, definition of .pr, .ce
and .eci.

) Urelements and elements containing at least 2 urelements are (among) primary elements.
) For every x € Viec\ U.ec, x.ce = x.

(iv) For every x,y € V\ U, if x Cy then y.p.d < z.p.d < z.d < y.d.

) For every x € V,

T.ec.p = x.p.ec,

i.e. the eigenclass map commutes with the (extended) bottom stratum map.

(vi) For every z,y € V,
x € y.ec iff x.ec C y.ec.
(vii) For every z,y € V\ U, i >0,

x Cy iff z.ec(i) Cy.ec(i).

Recall that we adopt the convention that if a subset X of V' is denoted by a capital letter
and .f is a function on V' then

X.f ={x.f |z € X}, ie X.f is the image of X under .f (this might differ from the value of
fat X).

For example, if X is a set of urelements, then X.ec means the set of all singleton subsets of X.

http://www.atalon.cz

3 The S1 structure

By an S1 structure we mean a structure (O, .ec, .pr, .sc,r, c) where

O is a set of objects.

.ec is a total function between objects, x.ec is called the eigenclass of x.

.pr is a total function between objects, x.pr is called the primary object of x.
.sc is a partial function between objects, x.sc (if defined) is the superclass of x.
is an object, called the inheritance root.

=3

¢ is an object, called the instance root (by si1(3b), ¢ is a shorthand for r.ec.sc).

Objects from O.pr are primary. We introduce explicit notation for some distinguished sets of
objects.

T is the set of terminal objects or just terminals. It consists of primary objects x such that

x # r and z.sc is not defined.
C' is the set of classes — primary objects that are not in 7.

C' denotes the set C U T .ec.
H is the set of heliz objects — objects x such that x.pr = c.sc(i) for some i > 0.

The structure is subject to the following conditions:

s1(0) The set O.pr of primary objects is finite.

s1(1) (O, .ec,.pr) is a primorder algebra.
We will apply established notation and terminology, in particular, definition of .ce and
€cl.

s1(2) r and ¢ are different classes.

s1(3) The superclass partial map .sc satisfies the following:

(a) (C,.sc,.r) is an algebraic tree such that

r.sc undefined,

elements of T.ec are (among the) leaves, i.e. T.ec.sc C C D C.sc.
(b) z.sc equals ¢ if x = r.ec.
(¢) z.sc equals z.ce.sc.ec if x € O.ec\ ({r.ec} UT.ec).

s1(4) cis a leaf of (C, .sc,r), i.e. ¢ & C.sc.

Observations:

(i) Condition si(3c) provides a unique extension of .sc from X.ec(i) to X.ec(i + 1), i > 0,
where X = (C\{r}) U (L.ecU{r.ec}).

(ii) Denote Oy = O.pr U O.pr.ec, the conventional extent of objects. Up to isomorphism, an
S1 structure is uniquely determined by (O, -ec, .sc).

Figure 1 shows a generic S1 structure from the “side view”. Each column corresponds to
an eigenclass index (so that the display is pruned to primary objects together with 1st to 4th
eigenclasses). The lines drawn between rounded boxes represent superclass links. They are
directed down-up or right-to-left in the case of [-shaped “twist” links. Eigenclass links are not
drawn — they are assumed to go horizontally, left to right.

http://www.atalon.cz

Ruby Object Model — The S1 structure - 7

EC3 helix class
E non-helix class

R

(558 terminal object

7/7) eigenclass from C.ec(2)

Figure 1 — Side view diagram of a generic S1 structure

3.1 The Ruby helix

The upper part of figure 1 provides an explanation for used terminology. It shows that an S1
structure contains a built-in substructure (the Ruby heliz) that resembles a helical threading of
a right-infinite screw.

Proposition Let S be an S1 structure.

(1) Any substructure of S is an S1 structure.
(2) The set H of helix objects forms the smallest substructure of S.
(3) (H,.sc,r) is a tree that is a chain.

Proof: (3) For each i > 0, H.pr.ec(i) are chains in .sc, with c.ec(i) and r.ec(i) as bottom and
top, respectively. By si1(3b) + si1(3c), r.ec(i + 1).sc = c.ec(i), so that the bottom of H.pr.ec(i)
is the parent of the top of H.pr.ec(i + 1). O

As of version 1.9, Ruby provides 4 helix classes, constituting the following chain:

¢ = Class < Module < 0Object < BasicObject =r.

3.2 Modules

A module is a terminal object = such that, for some ¢,
z.ec.sc(i) = c.sc (= Module),

i.e., according to the terminology established later, a module is a terminal that is a Module.

Modules are distinguished terminals with additional semantics that is introduced in the S2
structure, a refinement of the S1 structure. Similarly to classes and eigenclasses, modules play
the role of type system constituents, particularly in that they provide functionality (methods)
for other objects. Terminals that are not modules can be regarded as “end users” of the Ruby
type system and called pure instances.

http://www.atalon.cz

3.3 A sample S1 structure

A sample S1 structure is shown in figure 2, this time from the “front view”. The structure
contains 22 primary objects: 4 helix classes, 5 other built-in classes (String, Numeric, Integer,
Fixnum and Bignum), 2 built-in modules (numbered with 0 and 1), 4 user-created classes (S, A,
B and X), 2 user-created modules (M and N), and 5 user-created terminal objects (that are not
modules — s, i, j, b and k).

The primary objects are created by the following code:

class S < String; end

class A; end
class B < A; end
class X < Module; end
module M; end
N = X.new

s = S.new; i = 20; j = 30; k = 2xx70; b = B.new

@ helix class
© non-helix class
O eigenclass
% O terminal
@

X
\ terminal (module)
N N N superclass link
WOMOMOMON — topa class

, superclass link
to an eigenclass

®' @ @ ® @ ejgenclaSS link

Figure 2 — Front view diagram of an S1 structure

3.4 Inheritance

Proposition (O\T,.sc,r) is an algebraic tree.

Proof: Denote C; the partial algebra (C.ec(i),.sc), i > 0. By s1(3c), for each i > 0, C;_; and
C; are isomorphic, so that they are isomorphic to Cy = (C, .sc) which is, by s1(3a), a tree with
root r. By s1(3b) + s1(3c), r.ec(i).sc = c.ec(i — 1), i > 0, so that each pair (r.ec(i),c.ec(i — 1))
forms an oriented bridge (a “twist” link) from C; to C;—;. This means that the partial algebra
(O\T,.sc,r) is a tree.

[
Note that there are distinguished subtrees of (O \ T, .sc,r), in particular those formed by sets
C and C.

http://www.atalon.cz

Ruby Object Model — The S1 structure - 9

We denote H = (O \ T, <) the reflexive transitive closure of (O \ T, .sc) and call it the
superclass inheritance or sc-inheritance. For every non-terminal objects x, y,

r <y iff z.sc(i) =y for some i > 0.

Note: In the S2 structure, the domain of < is extended to also involve modules. This relation
then corresponds to the Ruby reflection operator <= (method of Module).

Observation: Let z, y be non-terminal objects and let 7, j be such that = € C.ec(i) and
y € Clec(j).

(i) x <y iff z.ec <y.ec.
(ii) If i # j then x <y iff i > j and y is a helix object. O
We denote x.hancs the list corresponding to the superclass chain of a non-terminal x,
x.hancsli] = x.sc(i) whenever x.sc(i) is defined.

The list x.hancs without eigenclasses (so that it contains just classes) is denoted x.hancestors.
This means that x.hancs = p + x.hancestors for a prefix list p of eigenclasses (p is empty if x is
a class).

3.5 The .class map

The class map, .class : O — C, is defined by z.class = x.ec.hancestors|0], so that the class of
x is the first class (least in <) in the superclass chain of z.ec. Equivalently,

x.class = x.ec.sc if x is terminal,

z.class = r.ec.sc = ¢ otherwise.

This means that the class map forms a tree shown in figure 3.

C\{c}

(Classes except Class)

O.ec
(Eigenclasses)

T
(Terminal objects)

Figure 3 — The .class map

Observation: Up to isomorphism, an S1 structure is uniquely given by (O.pr, .class, .sc).

http://www.atalon.cz

10

3.6 The instance-of and kind-of relations

The instance-of and (S1-) kind-of relations are defined as compositions .class o H and .ec o H,
respectively, i.e., for every object x and every non-terminal object vy,

x is an instance of y iff x.class <y,
x is kind of y iff zec <y

If z.class = y then we say that x is a direct instance of y 2. Instances of a class named X are
referred to as Xs. An instance of X is said to be an X.

Note: Similarly to <, the kind-of relation is introduced in its restriction: in the S1 structure,
it only allows non-terminal objects on its right side. The “full” kind-of also allows an object to
be kind of a module. The direct-instance-of, instance-of, S1-kind-of and kind-of relations then
form an inclusion chain:

class C .classoH C .ecoH C .eco ().

Observations:
(i) For every object z,

x is an instance of itself iff =z is a helix class,
x is kind-of 3 itself iff x is a helix object.

(ii) Restrictions of .class o H and .ec o H to O.pr are equal.

(iii) Up to isomorphism, an S1 structure is uniquely given by (O.pr, .class o H, .sc).

3.7 Nomenclature of objects

1 2
[Primary objects / Eigenclasses

: “Conventional extent” /
[a}- SR S U N] Higher-order eigenclasses

Classes ; la] Helix objects / Non-helix objects

___________ AR T E “Classive” objects /
: “Terminative” objects

Terminals / Classes
Pure instances / Modules

Blank slate objects / Objects

*.| instances

[c]

Figure 4 — The S1 nomenclature

Figure 4 shows a nomenclature of Ruby objects that is induced by the S1 structure. Each of
the 7 division lines partitions the set of objects into two complementary subsets, specified as

2 This corresponds to the instance_of? method.
3 Again, we mean ec o H here. The “full” kind-of also allows a module to be kind of itself.

http://www.atalon.cz

Ruby Object Model — The S1 structure - 11

<set> / <complemetary set>. The 4 labels inside the diagram apply to regions bordered by
full lines.

Note in particular that “Classes” is not synonymic to “Classes”, similarly for Modules and
Objects.

4 S1 superstructure representation
By a superstructure representation of the Ruby S1 structure we mean a structure (V,O) where

V' is a superstructure (according to 2.7) with its set of urelements denoted U.

O is a subset of V', elements of O are called objects. We distinguish subsets T, C' and H, of
terminals, classes and heliz objects, respectively, as follows:

T consists of objects that are urelements (=0 NU).
C' consists of objects that contain at least 2 urelements.
H consists of objects that have at least 2 strata.

The structure is subject to the following conditions:

sirep(0) The set O.pr of primary objects is finite.
sirep(1) O.pr = CWT and O.ec C O, i.e. for every object z,

the primary element x.pr is a class or a terminal,
the eigenclass z.ec is an object.

s1-rep(2)
The set C'N H of helix classes is a finite set {c = ho, h1,...,h,_1 =1}, n > 2, such that
hy = U W P (PE2(U))
for some k > 2 and some sets of urelements Uy, Uy,...,U,_1,7=0,...,n — 1, such that

(a) Uyc Uy C---CU, 1 =U (in particular, ¢ # r),
(b) Uy is disjoint with T and with every non-helix class.

S1l-rep (3)

(CUU.ec, Q) is a forest — therefore (C'U U.ec, C,r) is an algebraic tree. 4

We call the number k the stratality of (V,0). We also denote C' = C U T.ec, a set that forms a
subtree of (C'UU.ec,C,r).

Observations:
(i) r=UC =REYU)
(ii) c=NH.pr, Hpr=CnNH.

(iii) Terminals / non-helix classes / helix classes have rank 0 / 1 / k, respectively.

4 Recall that U.ec is the set of all singleton subsets of U.

http://www.atalon.cz

12

(iv) Non-terminals x are either mono-stratal (if x ¢ H) or k-stratal (if z € H).

(v) For every non-terminal object x and every i > 0,
xr € C.ec(i) iff z.p.d=1i+ 1.
(vi) Condition sirep(1) means that (O, .ec,.pr) is a subalgebra of (V, .ec, .pr).
(vii) Condition sirep(2b) implies that the ¢ class has the following constraints:

e There is no class x such that z C c.
e There is no terminal x such that z € c.

(vili) The bottom stratum operator .p, in a restriction, is an order-embedding of (C' U U.ec, C)
into (P.(U), C). In particular, (C', C) is isomorphic to (C.p, C).

We define the superclass map .sc: O\ ({r} UT) — O in a correspondence to si(3):
z.sc equals the parent of x in (C,C) if x € C'\ {r},

x.sc is defined just like in s1(3bc) if z € O.ec \ T .ec.

Proposition A (O, .ec, .pr,.sc,r, c) is an S1 structure.

Proof: ~ The proof is a straightforward verification of s1(0)-s1(4). O

Proposition B Every S1 structure S has a superstructure representation, for any given
stratality k£ < 2.

Proof: Given an S1 strucure S, with all the established notation, and a natural £ > 2, we
construct its representation (V, 0.v) as follows. Let U = T.ur & C.ur(1) W C.ur(2) be the set of
urelements of a superstructure V' where .ur : T < U and .ur() : C x {1,2} < U are injective
maps (so that U contains exactly one copy of each terminal and two copies of each class).

We define an injective map .v: O < V by

(a) If a is a class then a.v is a subset of PE~1(U) such that x € a.v iff one of the following
conditions is satisfied:

(i) x =y.ur(i) and y < a for some y € C, i € {1,2}.
(ii) z € T and z.ec < a.
(iii) x € P (PL72(U)) and a is a helix class.

(b) If a is terminal then a.v = a.ur.
(c) If a is an eigenclass then a.v = a.pr.v.ec(i) where i = a.eci.

The structure (V, O.v) is then a superstructure representation of S, with .v being an isomorphism
between S and the S1 structure induced by (V, O.v). O

4.0.1 Urobject

We denote u = PE2(U) and call this element the urobject. Obviously, u is a primary element
that is not an object (neither it is an urelement). By si-rep(2),

h = h.pWu.ec for every helix class h.

http://www.atalon.cz

Ruby Object Model — The S1 structure

4.1 An example

13

Figure 5 shows an S1 superstructure representation with 15 urelements, 2 terminals (b and M) 7
classes (4 helix classes and A, Q, B). Except for terminals, object eigenclasses are not displayed.

The structure can be created by the
following code:

class A; end
class Q < A; end
class B < A; end
b = B.new

module M; end

Figure 5 — S1 representation example

4.2 Semantics of C and €

In the following, we show how
e inheritance (H) corresponds to set inclusion (C), and

e the kind-of relation (.ec o H) corresponds to set membership (€).

Proposition C For every objects x, y,
x.p ey iff x.ecp Cy,

Proof: (a) If y is a terminal then neither side of “iff” can be satisfied.
(b) If y is an eigenclass then z.p € y iff x.p.ec C y iff x.ec.p C y.
(c) If x is a terminal then x.p =z € y iff z.ec.p = {z} Cy.

(d) If y is a non-helix class and = a non-terminal then neither side of “iff” can be satisfied.

(e) Let y be a helix class, x a non-terminal. Then z.p € y iff z.p € w.ec iff z.p.ec C u.ec iff

x.ec.p Cu.eciff z.ec.p Cy.

Proposition D Let O_; denote the set of objects with the eigenclass index less than .

0

http://www.atalon.cz

14

(1) For every z,y € O, \ T,
<y iff z.pCuy,

i.e. z is an (.sc-)inheritance descendant of y iff the bottom stratum of x is a subset of y.

(2) For every x € O, y€0y \ T,
rec<y iff zpey,

i.e. z is kind-of y iff x or its bottom stratum is an element (a member) of y.

(3) For every x € Oy,
z.class=N{y € C | z.p € y},

i.e. the class of x is the smallest class (w.r.t. inclusion) that contains x or its bottom
stratum.

Proof:

(1) Let #,y € O, \ T and denote i = x.p.d — 1, j = y.p.d — 1, so that x € C.ec(i), y € C.ec(j).
(a) Let i = j =0, i.e. x,y € C. Then

r<y iff zCy iff z.pCy.

The first equivalence is by definition: (C, <) is the reflexive transitive closure of (C,.sc)
which is defined as the reflexive transitive reduction of (C, C). The second equivalence is
immediate if x is not a helix class, that is, if x.p = x. If x is a helix class then x.p C y
implies that y is also a helix class, since, by si-rep(2b), non-helix classes are disjoint with c.p,
a subset of z.p. It follows that x C y.

(b) Let i = j > 0, i.e. © = a.ec(i), y = b.ec(i) for some a,b € C. Then a.ec(i) < b.ec(i) iff
a<biffa Cbiff ap Cbiff a.p.ec(i) C b.ec(i) iff a.ec(i).p C b.ec(i).

(c) Let i # j. By observation (ii) in 3.4,

x <y iff ¢ > 7 and y is a helix object.

We show that the same holds with “x < y” replaced by “z.p C y”.

(cl) Let i < j, equivalently, z.p.d < y.p.d. This implies z.p Z y.

(c2) Leti > jand y ¢ H. Then z.p.d > y.p.d = y.d, thus z.p € y.

(¢3) Let i > j and y € H. Then z = a.ec(j + 1) for some a € C.ec(i — j — 1), y = b.ec(j)
where b = y.pr = b.p W u.ec is a helix class. Since u.d =k —1 and a.p.d < z.p.d < k,
it follows by the definition of the urobject u that a.p C u. We then obtain

rz.p=a.ec(j+1).p=a.pec(j+1) C uecec(j) C b.ec(j)=y.

http://www.atalon.cz

Ruby Object Model — The S1 structure - 15

This shows that x.p C y.

(2) Follows from (1) and proposition C.

(3) Denote S ={y € C | xz.ec < y}. By definition, z.class equals the least element of S, w.r.t.
<. By (2), S={y e C|zpey}. Since < coincides with C on C, a superset of S, the
least element of S equals .S.

O

5 Object actuality

Because eigenclass chains are infinite, any implementation of the S1 structure must involve lazy
creation — for a primary object x, only finitely many eigenclasses are actually created. This
“actuality” state can be regarded as a refinement of the S1 structure.

We express this refinement by a set O,, called the actuality extent. Elements of O, are
actual(s). The following conditions are required:

sa(2) O.pr C O,. (Primary objects are actual.)

.ce C Q,. (The actual part of an eigenclass chain is its starting part.)

Note: The use of the sa prefix is conformant to [Pav12a] where object actuality is introduced
in the S4 structure.

We say that object actuality is conventional if the actuality extent is within the conventional
extent, i.e. O, C Oy — higher order eigenclasses are not actual. This condition is satisfied in
most Ruby programs.

For a primary object x, we denote x.actuals the list corresponding to the finite eigenclass
subchain of actual objects starting at . Conventional actuality is then equivalent to the equality
c.actuals.last = c.ec.

5.1 The actualclass map

For an object we define z.aclass, the actualclass of x, to be the first member of x.ec.hancs
that is actual. Semantically, object’s actualclass is the (conceptual) actual startpoint of method
lookup — non-actual eigenclasses before x.aclass can be skipped.

Figure 6 shows the position of x.aclass in x.ec.hancs for x = B in a structure created by
class A; end; class B < A; end (see also figure 7(a)).

Observations:

(i) For every object x, x.ec < z.aclass < z.class.

(ii) The actualclass map can be recursively defined by

http://www.atalon.cz

16

xT.ec < z.aclass < z.class < T

Figure 6 — The position of z.aclass in the superclass chain of z.ec

x.aclass = x.ec if x.ec is actual, else
x.aclass = x.ec.sc (= z.class) if = is terminal, else
x.aclass = x.sc.aclass.

(ili) (O, .aclass) is a tree such that

the root equals c.actuals.last (c.ec under conventional actuality),
terminals have depth c.actuals.length + 1 (3 under conventional actuality).

5.2 An example

Figure 7 shows several cases of object actuality in a sample S1 structure. Arrows indicate the
actualclass map along the chain starting in b. Except for the root loop at c.ec, the arrows are
drawn in a way to intersect skipped eigenclasses. Cases (a)—(d) can be incrementaly created by
the following code.

class A; end
class B < A; end
b = B.new (a) O, =0.prJH.pr.ec

#
class << A; end # (o) ---U{A.ec}
class << B; end # (c) ---U{B.ec}
class << b; end # (d) ---U{b.ec}

The (e) case is created by skipping the line for the (c) case.

5.3 The .klass map

The transition from (a) to (b) displayed in figure 7 shows that there is an efficiency problem with
implementing the .aclass map directly as a pointer structure. Updating the value of B.aclass
(from Object.ec to A.ec) would require a traversal of all descendants of A. This is solved in
MRI 1.9 by allocating additional eigenclasses, which can be considered semiactual. (They are
displayed with a dashed border in figure 7.) Each class has exactly one semiactual eigenclass in
its eigenclass chain, so that the set of semiactual objects can be expressed as C.actuals.last.ec.
Note: ~ We assume that the set X = T.ec(2)N0O, is empty, i.e. second eigenclasses of terminals
are not actual. In general, the set of semiactual objects also includes X.pr.actuals.last.ec.
Moreover, an additional constraint is imposed by MRI to object actuality which only manifests
itself if X is non-empty.

Let O,, be the set of objects that are actual or semiactual. The actualclass map is then
implemented via the .klass map which is a map O, — O, such that

x.klass = x.ec if x.ec is semiactual,

x.klass = z.aclass otherwise.

http://www.atalon.cz

Ruby Object Model — The S1 structure - 17

Figure 7 — Eigenclass actualization

6 Correspondence with Smalltalk-80

The Ruby S1 structure can be seen as a rectification of the correspondent structure from the
Smalltalk-80 object model. For a detailed comparison, see [Pav12b].
In Smalltalk, the following requirements are realized:

(0) There are 3 basic types of objects:

(a) Terminal objects. These are objects that are not (direct) method providers.

(b) Classes. These are non-terminal objects with built-in naming support.

(¢) Non-terminal objects without naming support. In Smalltalk, such objects are called
metaclasses.

Note: As a rule, Smalltalk literature [GR83] [Hun97] is rather dialectical in terminology
for (b) and (c).

(1) There is a kind-of relation between objects. For objects z, y, x is kind-of y means that y
provides methods for x as the receiver.

(2) There is an inheritance between non-terminal objects. The inheritance, denoted H, is a
partial order that is a tree.

(3) For every object z, the set {y | « is kind-of y}, denoted mlc(z), is an up-set chain in H,
the method lookup chain for x as the receiver.

(4) For every classes x, y, if (x,y) € H then mlc(x) O mle(y).
(5) Different classes have different method lookup chain.

http://www.atalon.cz

18

We denote z.aclass the least (i.e. first) element of mlc(z). In Smalltalk, this map is reflected
by a method named class. Conditions (0)—(5) are achieved by the structure schematized in
figure 8. For each class x, z.aclass is the unique metaclass for x. Metaclasses, on the other
hand, have constant method lookup chain: for each metaclass x, x.aclass equals the Metaclass
class. For terminal objects x, x.aclass is a class.

:
i

- (@) the Metaclass class
Obj ect l——)

] — the .aclass map

—e .aclass-link to the Metaclass class

[

1777

>

2ys

Figure 8 — Smalltalk-80 analogue of the S1 structure

In the Ruby object model, (4) and (5) are replaced by stronger conditions:

(4*%) For every objects x, y, if (x,y) € H then mlc(z) 2 mlc(y). °
(5%) Different objects have different method lookup chain.

This is achieved by introducing eigenclasses as unique meta-objects. There is nothing special
with classes regarding their ownership of meta-objects. Also terminal objects have meta-objects
as well as the meta-objects themselves.

This can be viewed as a rectification of conceptual inconsistencies of the Smalltalk-80 object
model:

e The Ruby class method works according to its name — applied to an object x, it returns
x.class, i.e. the first class encountered in the method lookup chain for x.

In Smalltalk, the class method means in fact the (Smalltalk version of the) actualclass
map, revealing implementation detail rather than providing conceptual information about
the class system.

e There is no Metaclass class in Ruby. For eigenclasses of classes, the method lookup chain
merely starts with some non-actual eigenclasses until it reaches c.ec, the eigenclass of the
Class class.

7 Transitions

We partially describe the state transition system of S1 structures by specifying the fundamental
constraint for the state domain.

sir(l) Let S; = (O, .eci, .pri, .s¢i, 15, ¢), © = {1,2}, be a pair of S1 structures from the state
domain. Then

5 In Smalltalk, this condition is not satisfied if is a helix class and y a metaclass.

http://www.atalon.cz

Ruby Object Model — The S1 structure - 19

(O, N Oy, .€c;, .pri, .S¢i, 13, ¢;) is a substructure of S;, i = {1, 2}.

This means that superclass and eigenclass links between objects are fixed — they are preserved
by transitions. Subsequently, transitions preserve the derived maps, relations and substructures,
in particular, the Ruby helix, object nomenclature, the class map and the instance-of relation.

8 Further extensions

S1 structures together with their transition system form the first non-trivial approximation of the
Ruby object model as described in [Pav12a]. As the next refinement, the already mentioned S2
structure is presented. This structure allows to express inclusion of modules into Modules ¢. As
a result, a forest structure (more precisely, a single main tree together with an isolated inclusion
chain for each module) is induced, constituting a refinement of the superclass inheritance. This
induced structure is the “resolution order” used for method and constant lookup.

The document [Pav12a] provides further refinements, yielding a detailed description. The
resulting structure can be viewed as a naming multidigraph, consisting of nodes and uniquely
labelled arrows between them. Objects are special kind of nodes, distinguished arrow names
have special semantics. Incremental specification corresponds with a stratification of arrows.

9 Summary and conclusion

This document provides a rigorous description of a structure that is of fundamental importance
to object-oriented programming. In its rudimentary form, the structure first appeared in the
Smalltalk-80 programming language three decades ago. The rectified version has been used to
build the foundation of the data model of the Ruby programming language.

As a result of the description, important maps and relations between objects have been
derived, in particular, superclass inheritance, the class map, the instance-of relation and, partially,
the kind-of relation. We also have established a consistent terminology for basic constituents of
the Ruby object model.

In section 4, we provided a set-theoretic representation of the S1 structure. It is shown how
the structure can be interpreted via the fundamental relations C and € of set theory.

In section 5, we slightly refined the S1 structure by distinguishing object actuality extent to
reflect the necessity of lazy creation of eigenclasses. This induces the actualclass map which is,
with respect to inheritance, “positioned” between the eigenclass and the class maps. The .klass
map is then a slight alteration of the actualclass map that closely relates to the implementation.

Section 6 reveals the correspondence of the S1 structure with its precursor in Smalltalk-80.
It is shown that the Smalltalk model contains conceptual inconsistencies that have been rectified
by the Ruby object model.

Hopefully, this article demonstrates at least the following two things:

e The potential of mathematical structures for a human-centric description of software.

e The exquisite quality of the Ruby programming language.

6 For convenience, Modules (i.e. the set of classes, eigenclasses and modules) are called includers.

http://www.atalon.cz

20

References

[Bla09] David A. Black. The Well-Grounded Rubyist. Manning Publications, 2009.

[BS03] Egon Boérger and Robert Stark Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.

[CK90] C. C. Chang and H. Jerome Keisler. Model Theory. Studies in Logic and the Founda-
tions of Mathematics. Elsevier, third edition, 1990.

[DP02] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge University
Press, second edition, 2002.

[FMO08] David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language.
O’Reilly, 2008.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implemen-
tation. Addison Wesley, 1983.

[Gur95] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. Specification and Validation
Methods, E. Borger (ed.) Oxford University, Press 1995.

[Hun97] John Hunt. Smalltalk and Object Orientation: An Introduction. Springer Verlag, 1997.

[Mull0] F. A. Muller The Characterisation of Structure: Definition versus Axiomatisation.

The Present Situation in the Philosophy of Science, F. Stadler et al. (eds.) Dordrecht:
Springer Verlag, 2010.

[Pav12a] Ondrej Pavlata. The Ruby Object Model: Data Structure in Detail. http://www.

atalon.cz/rb-om/ruby-object-model/.

[Pav12b] Ondfiej Pavlata. The Ruby Object Model: Comparison with Smalltalk-80. http:

[SSBO1]

//www.atalon.cz/rb-om/ruby-object-model/co-smalltalk/.

Robert Stark, Joachim Schmid, Egon Borger. Java and the Java Virtual Machine.
Definition, Verification, Validation. Springer Verlag, 2001.

http://www.atalon.cz/rb-om/ruby-object-model/
http://www.atalon.cz/rb-om/ruby-object-model/
http://www.atalon.cz/rb-om/ruby-object-model/co-smalltalk/
http://www.atalon.cz/rb-om/ruby-object-model/co-smalltalk/
http://www.atalon.cz

	Introduction
	Ruby version

	Preliminaries
	Notational conventions
	Monounary algebra
	Algebraic forest
	Algebraic tree
	Primorder algebra
	State transition system
	Superstructure

	The S1 structure
	The Ruby helix
	Modules
	A sample S1 structure
	Inheritance
	The .class map
	The instance-of and kind-of relations
	Nomenclature of objects

	S1 superstructure representation
	Urobject
	An example
	Semantics of and

	Object actuality
	The actualclass map
	An example
	The .klass map

	Correspondence with Smalltalk-80
	Transitions
	Further extensions
	Summary and conclusion

